

Analysis of Maximal Extractable Value on the Algorand Blockchain

Jonas Gebele, April 24, 2023, Final Presentation - Guided Research

sebis

Chair of Software Engineering for Business Information Systems (sebis) Department of Computer Science School of Computation, Information and Technology (CIT) Technical University of Munich (TUM) wwwmatthes.in.tum.de

- 1. Motivation and Background Information
- 2. Problem Statement
- 3. Research Objectives & Results
 - 3.1. Analyze Theoretical Arbitrage-Related MEV on the Algorand Blockchain
 - 3.2. Identify Potential Opportunities for Profitable cross-DEX Arbitrage Transactions
 - 3.3. Analyze Behavior of Market Participants in the Algorand Ecosystem
- 4. Conclusion

Motivation and Background Information

Types of MEV Strategies

3

Liquidations

- 1. Motivation and Background Information
- 2. Problem Statement
- 3. Research Objectives & Results
 - 3.1. Analyze Theoretical Arbitrage-Related MEV on the Algorand Blockchain
 - 3.2. Identify Potential Opportunities for Profitable cross-DEX Arbitrage Transactions
 - 3.3. Analyze Behavior of Market Participants in the Algorand Ecosystem
- 4. Conclusion

Problem Statement

MEV Dynamics on Fixed Fee Blockchains

Dynamic Fee Blockchains

Fixed Fee Blockchains

No Transaction Prioritization by Fee

Transaction Fees go to Algorand Foundation

Certain MEV only exploitable by block-producers (network-level MEV)

- 1. Motivation and Background Information
- 2. Problem Statement
- 3. Research Objectives & Results
 - 3.1. Analyze Theoretical Arbitrage-Related MEV on the Algorand Blockchain
 - 3.2. Identify Potential Opportunities for Profitable cross-DEX Arbitrage Transactions
 - 3.3. Analyze Behavior of Market Participants in the Algorand Ecosystem
- 4. Conclusion

Analyze Theoretical Arbitrage-Related MEV on the Algorand Blockchain

AMMs (Constant-Product Market Maker)

Order Book		0.5 -
Price	Size(Cont)	Total(Cont)
19281.0	102	8.70M
19280.5	10.00K	8.70M
19280.0	200	8.69M
19279.5	10.00K	8.69M
19278.5	12.00K	8.68M
19277.5	2.64M	8.67M
19277.0	2.33M	6.02M
19276.5	1.55M	3.69M
19276.0	1.71M	2.13M
19275.0	178.04K	417.89K
19274.5	233.35K	239.84K
19274.0	6.49K	6.49K
19273.5 🔺	■ 19285.1	
19273.5	102.78K	102.78K
19272.5	169.49K	272.27K
19272.0	103.28K	375.55K
19271.5	98.61K	474.17K
19271.0	181.01K	655.18K
19270.5	1.06M	1.72M
19270.0		1.72M
19269.5	3.38M	5.11M
19269.0	1.75M	6.86M
19268.5	10.00K	6.87M
19268.0	890.98K	7.76M
19267.5	1.12M	8.89M

Continuous-Limit Order-Books

Analyze Theoretical Arbitrage-Related MEV on the Algorand Blockchain

0.18465, 0.185404, 0.194214, 0.184586, 0.182313, 0.184843, 0.187997

Block-Number

Analyze Theoretical Arbitrage-Related MEV on the Algorand Blockchain

ТШ

ALGOUSDC price-chart on TINYMAN(v2) with theoretically Maximal Extractable Value

Analyze Theoretical Arbitrage-Related MEV on the Algorand Blockchain

ТШ

ALGOUSDC price-chart on TINYMAN(v2) with theoretically Maximal Extractable Value

Analyze Theoretical Arbitrage-Related MEV on the Algorand Blockchain

Total Theoretically Maximal Extractable Value across all analyzed pairs and DEX's

Identify Potential Opportunities for Profitable cross-DEX Arbitrage Transactions

Algorithm for Lower-Bound cross-DEX Arbitrage Estimate

- 1. Search for DEX's with theoretical MEV with prices being below deviation boundary
- 2. Search for DEX's with theoretical MEV with prices being above deviation boundary
- 3. For each set of DEX's of 1. and 2. select the maxima
- 4. Perform transactions on both markets using the input of the smaller MEV

Total extractable value across all DEX'es on ALGO/USD

Identify Potential Opportunities for Profitable cross-DEX Arbitrage Transactions

Example in Block 27424778

- 1. Buy ALGO with goUSD on HumbleSwap using **2,472.06** goUSD for 10,746.32 ALGO
- 2. Sell 10,746.32 ALGO on HumbleSwap using for **2,505.61** USDC.

Profit of **33.55 USD** (assuming constant stablecoin-prices)

Analyze Behavior of Market Participants in the Algorand Ecosystem

Dominated by 3 market participant (doing >95% of all DEX interactions)

- EVESCVBC6VDIJAZM3HMUGYVQLKWHH4YJBMDV5EF65RMS67TFS5URZQ5YNY
- AACCDJTFPQR5UQJZ337NFR56CC44T776EWBGVJG5NY2QFTQWBWTALTEN4A
- J4BJWP67LHXT7LQTWZYWJGNSB25VZMO6SFZPKBSY7HJUCXJIFVE2PEOTVA

Activity in times of high volatility on CEX's

High likelihood market-making operations or CEX to DEX arbitrage

- 1. Motivation and Background Information
- 2. Problem Statement
- 3. Research Objectives & Results
 - 3.1. Analyze Theoretical Arbitrage-Related MEV on the Algorand Blockchain
 - 3.2. Identify Potential Opportunities for Profitable cross-DEX Arbitrage Transactions
 - 3.3. Analyze Behavior of Market Participants in the Algorand Ecosystem
- 4. Conclusion

Summary

First insights into MEV dynamics on the Algorand blockchain with fixed gas-price dynamics High number of theoretical arbitrage opportunities across various DEX's No evidence for systematic cross-DEX related MEV extraction

Limitations

Limited time frame Limited number of tokens and markets Relatively simple algorithm for finding profitable cross-DEX arbitrage transactions

Future Work (Application Project)

Extend time periods to generalize Improve lower-bound estimate of cross-DEX related MEV

TLTT sebis

Jonas Gebele

jonas.gebele@in.tum.de

Technische Universität München Faculty of Informatics Chair of Software Engineering for Business Information Systems

Boltzmannstraße 3 85748 Garching bei München

